Firing-rate response of a neuron receiving excitatory and inhibitory synaptic shot noise.
نویسندگان
چکیده
The synaptic coupling between neurons in neocortical networks is sufficiently strong so that relatively few synchronous synaptic pulses are required to bring a neuron from rest to the spiking threshold. However, such finite-amplitude effects of fluctuating synaptic drive are missed in the standard diffusion approximation. Here exact solutions for the firing-rate response to modulated presynaptic rates are derived for a neuron receiving additive excitatory and inhibitory synaptic shot noise with exponential amplitude distributions. The shot-noise description of the neuronal response to synaptic dynamics is shown to be richer and qualitatively distinct from that predicted by the diffusion approximation. It is also demonstrated how the framework developed here can be generalized to multiplicative shot noise so as to better capture effects of the inhibitory reversal potential.
منابع مشابه
Modulation of firing rate by background synaptic noise statistics in rat visual cortical neurons.
It has been shown previously that background synaptic noise modulates the response gain of neocortical neurons. However, the role of the statistical properties of the noise in modulating firing rate is not known. Here, the dependence of firing rate on the statistical properties of the excitatory to inhibitory balance (EI) in cortical pyramidal neurons was studied. Excitatory glutamatergic and i...
متن کاملSpike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity
Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory in...
متن کاملGain Modulation from Background Synaptic Input
Gain modulation is a prominent feature of neuronal activity recorded in behaving animals, but the mechanism by which it occurs is unknown. By introducing a barrage of excitatory and inhibitory synaptic conductances that mimics conditions encountered in vivo into pyramidal neurons in slices of rat somatosensory cortex, we show that the gain of a neuronal response to excitatory drive can be modul...
متن کاملImpact of correlated synaptic input on output firing rate and variability in simple neuronal models.
Cortical neurons are typically driven by thousands of synaptic inputs. The arrival of a spike from one input may or may not be correlated with the arrival of other spikes from different inputs. How does this interdependence alter the probability that the postsynaptic neuron will fire? We constructed a simple random walk model in which the membrane potential of a target neuron fluctuates stochas...
متن کاملIntrinsically-generated fluctuating activity in excitatory-inhibitory networks
Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spikin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 105 17 شماره
صفحات -
تاریخ انتشار 2010